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Abstract - Video surveillance is an important tool for 
force protection and law enforcement, and visible and 
infrared video cameras are the most common imaging 
sensors used for these purposes.  A feasibility study on 
fusing concurrent visible and infrared imageries using 
13 spatial domain and pyramid-based pixel-level fusion 
algorithms to improve the tracking performance of an 
existing video surveillance system was performed.  Some 
of the decomposition methods were designed to increase 
the contrast, whereas some wavelet methods offered 
shift invariance.  The effects of these fusion algorithms 
on the detection and tracking performance of the given 
target tracker were examined and compared.  Fusion 
method based on the ratio of low-pass pyramids was 
shown to offer a superior detection performance at a 
relatively low computational cost. 
 
Keywords: Image fusion, infrared imagery, visible 
imagery, target detection, target tracking. 
 

1 Introduction 
As sensor technology, network communication, 

computing power, and digital storage capacity have all 
dramatically improved, still and video imageries have 
become the most common and versatile forms of media for 
capturing, analyzing, and disseminating a variety of 
information.  In many scenarios, useful information is 
derived from the accurate detection, tracking, and 
recognition of certain targets of interest in a timely 
manner.  Typical applications of this nature include 
automatic target recognition systems, force protection 
surveillance systems, and aerial reconnaissance systems.  

Unfortunately, many of these applications involve 
monitoring adversarial activity in less than ideal 
environments, which can be particularly challenging to the 
imaging systems involved.  Visible cameras are the 
prevailing imaging sensors, because they are relatively 
cheap, easy to use, and capable of producing high quality 
imagery under favorable conditions.  However, visible 
cameras can be severely affected by many common 
environmental factors, such as darkness, shadows, fog, 
cloud, rain, snow, and smoke.  Infrared (IR) imaging 
systems may overcome or alleviate some of these 
problems, but they are subjected to a number of limitations 

of their own.  IR-specific difficulties include a much lower 
sensor resolution; drastic diurnal and seasonal changes in 
target signatures; total loss of non-thermal but important 
visual features (such as color and text); very low thermal 
contrast between targets and background under certain 
combinations of ambient and target temperatures; 
blockage by visually transparent thermal signal shields 
(such as car windshields and glass doors)’ and much 
higher costs for purchasing and maintaining the systems.  
Due to these highly complementary strengths and 
limitations of visible and IR cameras, more advanced 
target detection and tracking systems may want to acquire 
and process both visible and IR imageries concurrently 
and jointly for critical applications. 

Image fusion can be handled at several levels [1].  At the 
lowest levels, the raw image data can be fused, using 
either the original signal, or more likely, after the image 
has been preprocessed, using the resulting pixel values.  
Pixel-level fusion is very common due to its simplicity and 
universality, and is the focus of this work as well. 

There are many ways to measure the performance of 
image fusion algorithms, including subjective analysis, 
complex similarity metrics, signal-to-noise ratio, and 
tracking performance.  Motwani et al. suggested 
parameters for subjective analysis, but they concluded that 
subjective measures were not particularly helpful for 
tracking systems, except in the case of incorporating 
human feedback into the detection loop [2]. 

Cvejic et al. discussed a number of objective similarity 
metrics, including the Piella metric, Petrovic metric, and 
Bristol metric [3].  The Piella metric measures structured 
similarity (which is based on luminance, contrast, and 
structure information) over local window regions and then 
averages these similarity measures over all windows.  
Weighting is given to the relative importance of each input 
image toward the fused image, window by window.  The 
Petrovic metric specifically evaluates edge structure by 
determining the strength of edge information retained from 
each of the original images in the fused image.  The 
Bristol metric, in contrast to the Piella metric, uses a 
slightly different weighting scheme based on the ratio of 
covariances between the original and fused images.   

Cvejic et al. compared the tracking performance of a 
particle filter based on these objective metrics and found 
that the tracking performance was actually worsened by 

14th International Conference on Information Fusion
Chicago, Illinois, USA, July 5-8, 2011

978-0-9824438-3-5 ©2011 ISIF 1962



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
Enhanced Target Tracking Through Infrared-Visible Image Fusion 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Army Research Laboratory,Sensors and Electron Devices 
Directorate,Adelphi,MD,20783 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Presented at the 14th International Conference on Information Fusion held in Chicago, IL on 5-8 July
2011. Sponsored in part by Office of Naval Research and U.S. Army Research Laboratory. 

14. ABSTRACT 
Video surveillance is an important tool for force protection and law enforcement, and visible and infrared
video cameras are the most common imaging sensors used for these purposes. A feasibility study on fusing
concurrent visible and infrared imageries using 13 spatial domain and pyramid-based pixel-level fusion
algorithms to improve the tracking performance of an existing video surveillance system was performed.
Some of the decomposition methods were designed to increase the contrast, whereas some wavelet methods
offered shift invariance. The effects of these fusion algorithms on the detection and tracking performance
of the given target tracker were examined and compared. Fusion method based on the ratio of low-pass
pyramids was shown to offer a superior detection performance at a relatively low computational cost. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



the fusion of images.  Mihaylova et al. of the same 
research group later adopted a performance metric of 
normalized overlapping ground truth and tracking system 
bounding boxes [4].  Their results showed that IR images 
alone performed just as well or better than most fusion 
algorithms (including contrast pyramid, dual-tree complex 
wavelet transform, and discrete wavelet transform) in 
tracking, while visible spectrum images lagged behind 
under harsher conditions like occlusions. 

There are many possible methods of tracking a moving 
target, including background subtraction, optical flow, 
moving energy, and temporal differencing.  Because a 
Force Protection Surveillance System (FPSS) dataset with 
minimal background interference was available to us, we 
decided to use the companion FPSS tracker, which is 
based on background subtraction, to examine the tracking 
performance of various image fusion methods [5].  Other 
trackers could be used as well, such as those tracking 
algorithms surveyed by Trucco and Plakas [6]. 

In Section 2, the image acquisition and registration 
process, as well as 13 pixel-level image fusion methods of 
interest are described.  A brief description of the FPSS 
tracker is provided in Section 3, while the resulting 
tracking performance of various image fusion methods are 
presented in Section 4.  Finally, some concluding thoughts 
are given in Section 5. 

2 Image Manipulations 
2.1 Image Acquisition 
To study the effects of fusing visible and IR imagery in 
detecting and tracking moving targets, we used a large 
collection of concurrent visible and long-wave infrared 
(LWIR) video clips called the Second FPSS Dataset [7].  
These video clips were collected with the Sentry Personnel 
Observation Device (SPOD) manufactured by FLIR 
Systems.  As shown in Figure 1, the SPOD includes a 
LWIR microbolometer and a color visible CCD camera.  
The LWIR images were acquired with a focal plane array 
of 320 x 240 pixels in resolution, while the color visible 
images were captured at the resolution of 460 National 
Television Standards Committee (NTSC) TV lines. 

 

2.2 Image Registration 
Both the original color visible and LWIR images were 

cropped and scaled to attain a coarse level of co-
registration between the corresponding color-LWIR 
images captured at any given time.  The image registration 
step was necessary, because the color and LWIR cameras 
of the SPOD were merely bore-sighted into a ruggedized 
enclosure.  They did not share a common optical lens, 
having slightly different lines of sight, fields-of-view, and 
image resolutions.  Since the distance between these 
cameras was only a few inches, while the typical ranges to 
the targets in the FPSS dataset were 50‒200 yards, an 
affine transformation was considered as sufficient. 

Image registration can be performed automatically or 
manually.  Although automatic image registration is quite 
accurate and feasible for images of similar electromagnetic 
spectrum, registering color and LWIR images is a very 
difficult task.  The effects of automatic and hybrid image 
registration schemes were explored by Hines et al., but 
automatic registration was generally not successful [8]. 

Due to these difficulties, the FPSS dataset was coarsely 
registered by first manually choosing a large number of 
salient corresponding markers in many representative pairs 
of color-LWIR images.  The coordinates of these markers 
were then used to derive the affine transformation between 
the color and LWIR images through a polynomial fitting 
process.  The maximal usable area could be extracted after 
applying the affine transformation and avoiding sensor 
artifacts in both color and LWIR images.  The same affine 
transformation and clipping mechanism were used for the 
entire dataset.  Image patches extracted from the original 
color and LWIR images were scaled to a common image 
size of 640 x 480 pixels and stored in JPEG format.  

2.3 Image Fusion 
2.3.1 Fusion Methods 

In this work, we focus on 13 pixel-level image fusion 
methods, ranging from the simple pixel averaging method 
to the complicated dual-tree complex wavelet transform, 
which fall into two broad categories: simple combination 
and pyramid structure.   

The inputs to these image fusion algorithms were those 
coarsely registered FPSS color and LWIR image pairs, a 
pair of which is shown in figures 2(a) and 2(b).  To allow 
fusion with LWIR images, the color (RGB) images were 
first converted to grayscale using a simple weighting of 
0.2989R + 0.5870G + 0.1140B, which yielded intensity 
value but removed hue and saturation information.  For 
many automatic target detection and tracking algorithms, 
it is indeed more efficient to process grayscale images 
internally, while providing color outputs for human 
consumption only.  The grayscale visible and LWIR 
images were manipulated using MATLAB functions to 
produce various fused images [9, 10].   

 

Figure 1.  Sentry Personnel Observation Device. 
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2.3.2 Simple combinations 
The most intuitive pixel-level fusion methods examined 

here are simple averaging, intelligent weighting, and 
selecting maximum or minimum pixel values.  All these 
methods involve only simple pixel operations, which 
require traversing the two input images pixel by pixel, 
leading to simple Ο(m×n) operations for an image of size 
m×n.  Pixels (I1)ij and (I2)ij in images I1 and I2 need only 
be compared against each other once. 

In the simple averaging method, fused images were 
generated by calculating (If)ij = [(I1)ij + (I2)ij] / 2  and an 
example of the resulting image is shown in Figure 2(c).  
Because the visible and LWIR images have differing 
resolutions and salient features, this method tends to 
muddle the details. 

We attempted to boost the influence of the better image 
by using the Principal Component Analysis (PCA) derived 
from the covariance matrix of the two input images.  We 
treated each image as a single vector I1 and I2, thus 
creating a 2×2 covariance matrix, when computing the 

covariance of [I1 I2].  The normalized eigenvector for the 
larger eigenvalue provides the necessary weighting: (If)ij = 
(vk)1(I1)ij + (vk)2(I2)ij, where vk represents the eigenvector 
corresponding to λk, the larger one of the two eigenvalues.  
Generally, the PCA method strongly favors the image with 
the highest variance, which may or may not contain more 
informative details.  In fact, this selection criterion can be 
a harmful one when dealing with noisy images.  As shown 
in Figure 2(d), the PCA-weighted fused image closely 
matches the original visible image due to its higher level 
of details and variance. 

Choosing the maximum pixel value from a pair of 
LWIR and visible images, (If)ij = max[(I1)ij, (I2)ij], may be 
appropriate to find some hidden targets.  A man may be 
occluded in the visible spectrum, for example, but he can 
still be located in the LWIR image.  For a background 
subtraction method, it may be desirable to boost the 
relative intensity of targets through this fusion method, if 
these targets tend to be brighter than their immediate 
background.  Figure 2(e) shows a fused image generated 
by the maximum pixel value method.  

Choosing the minimum pixel value from a pair of LWIR 
and visible images, (If)ij = min[(I1)ij, (I2)ij], may not be very 
useful in most cases.  As evident from Figure 2(f), this 
method tends to deemphasize strong foreground objects. 
In some rare scenarios, this method might be helpful in 
extracting weak targets (with both weak but detectable 
visible and LWIR signatures) from a busy background by 
deemphasizing stronger and brighter background pixels in 
the neighborhood. 

2.3.3 Pyramid Structures 
Pyramid decompositions were introduced by Burt and 

Adelson in 1983 as a compact encoding scheme [11].  The 
original idea is that a Gaussian kernel (low-pass filter) is 
applied to the top-level image of a pyramid, I1*G1, 
representing the convolution of the image I1 with a 
Gaussian blurring matrix G1.  This image is then down-
sampled to form the next level of these pyramids.  The 
difference between the low-pass version and its previous-
level image represents the high frequency or detail 
information of the previous-level image.  At each step 
down the pyramid, we continue to filter and down-sample 
in the same manner.  A Laplacian pyramid is formed by 
computing the difference between each level of the 
pyramid, iteratively separating an image into low and high 
frequency components, except that the lowest level 
contains the remaining low-frequency information.   

Since each level is a down-sampled version of the 
previous level, we need to up-sample and interpolate the 
decimated version in order to compute the difference 
between the two adjacent levels.  For example, the 
Laplacian image at level k of Im, denoted as (Lm)k, can be 
computed as (Lm)k = (Im)k – fk+1((Im)k+1), where fk+1( ) 
denotes the function consisting of up-sampling and an 
interpolation filter with similar blurring response as Gk, 
while k denotes the level of decomposition.  As we 
proceed down the pyramid, (Im)k denotes the blurred and 

 
    (a)                          (b)            (c) 

 
   (d)                          (e)          (f) 

 
   (g)                          (h)          (i) 

 
   (j)                           (k)        (l) 

 
  (m)                          (n)         (o) 

 

Figure 2.  Examples of original (a) Color and (b) LWIR 
images, as well as fused images produced by (c) Average, 
(d) PCA-weighted average, (e) Maximum, (f) Minimum, 
(g) Laplacian, (h) FSD, (i) ROLP, (j) Contrast,  
(k) Gradient, (l) Morphological, (m) DWT, (n) SIDWT, 
and (o) DT-CWT fusion methods. 
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decimated version of (Im)k-1.  By decomposing each set of 
the original LWIR and visible images, we form compact 
representations separated into detail and approximation 
information.  Hence, we can then weight the coefficients 
in each pyramid.  To reconstruct the fused image, we then 
reverse the decomposition process by combining each 
level with the successive one.  If we select the maximum 
coefficients between the two pyramids by taking 
max[((L1)k)ij, ((L2)k)ij] for each level k and all ij 
coefficients during this reconstruction process, then a 
Laplacian fused image is generated (see Figure 2(g)).  We 
could also modify the selection criteria of the algorithm, 
such as providing more priority to coefficients with larger 
or more similar coefficients.  

Instead of using the maximum coefficients at the lowest 
level of the pyramid, we may choose to use the LWIR 
image, the visible image, or a combination of the two at 
the lowest level as well.  If we choose the lowest level 
LWIR image, this implies that the background for the 
fused image is built on the LWIR image and detail 
information from the visible image is only included when 
these details outweigh those of the LWIR.  The Laplacian 
pyramid is a simple decomposition scheme that assumes 
very little information about the structure of the image.  
Implementation details of the Laplacian pyramid include 
the handling of border effects and ensuring that the image 
size is a factor of two at each level of decomposition.  

A Filter-Subtract-Decimate (FSD) pyramid is similar to 
the Laplacian pyramid, but the levels are subtracted prior 
to decimations.  Some variations of FSD also make minor 
adjustments in the synthesis phase.  Figure 2(h) shows a 
fused image produced by the FSD technique proposed by 
Anderson [12].  Figures 2(g) and 2(h) may look similar, 
except for a slight shading difference, but their differences 
in tracking performance could be larger than that.   

Ratio-of-low-pass (ROLP) pyramid and contrast 
pyramid use the ratio of levels of the Gaussian pyramid to 
produce the next level, rather than the difference [13, 14].  
The primary difference between ROLP and contrast 
pyramids is the use of a local background to normalize the 
ratio.  The contrast pyramid computes a pyramid level as 
(Lm)k = [(Im)k / fk+1((Im)k+1)] − 1, and the offset of 1 is 
reversed during the reconstruction phase, whereas the 
ROLP pyramid computes (Lm)k = (Im)k / fk+1((Im)k-1).  Note 
that a small epsilon factor can be added to the denominator 
to prevent division by zero issues   Figures 2(i) and 2(j) 
shows the resulting fused images from these two methods.  
These decomposition methods are designed to emphasize 
the contrast in an image.  

The gradient pyramid chooses the largest directional 
derivative in each of four directions: horizontal, vertical, 
and the two diagonal directions [15].  These derivatives 
can be computed using simple matrix operators.  
Coefficients are selected for each of the four directions 
independently during the fusion process.  An example of 
fused image produced by the gradient pyramid method is 
shown in Figure 2(k).  These methods preserve orientation 
information, which can be useful in some applications. 

Morphological operations, such as opening and closing, 
can be applied to the Gaussian pyramid without harmful 
effects under certain circumstances and result in a 
morphological pyramid [16].  For example, we can apply 
the following operations to compute the next set of 
coefficients from (Im)k: morphologically open (Im)k by 
selecting the smallest nearest neighboring of a pixel, and 
then the largest in the same region of the resulting image.  
The resulting image can then be closed by reversing the 
process, namely, first choosing the largest and then the 
smallest nearest neighbors.  The opening operation will 
remove small objects, while the closing operation will 
remove noise and smooth transitions.  We decimate the 
resulting image to obtain our image for the next level of 
the pyramid, (Im)k+1.  We obtain the pyramid coefficients 
of level k+1 as the difference between (Im)k and an up-
sampled and dilated version of (Im)k+1.  Although the 
morphological operations may produce interesting results, 
as shown in Figure 2(l), they are very computationally 
intensive in nature. 

Finally, many specialized pyramid decompositions, such 
as contourlets and wavelets, separate an image into 
approximations and detail.  We examined a simple discrete 
wavelet transform (DWT) using the Daubechies 
Symmetric Spline wavelet, a shift invariant discrete 
wavelet transform (SIDWT) using the Harr wavelet, as 
well as a less redundant variant of SIDWT, the dual-tree 
complex wavelet transform (DT-CWT).  Examples of 
fused images resulting from these three methods are 
shown in figures 2(m), 2(n), and 2(o), respectively.   

The simple DWT can be prone to artifacts as a function 
of position in the image, which could be particularly 
problematic when using the FPSS background subtraction 
tracker to detect motion information.  As an object moves 
slightly, artifacts could shift in the image, resulting in 
many unnecessary false alarms.  Given their shift-invariant 
property, on the other hand, the SIDWT and DT-CWT are 
expected to perform better in a tracking task.   

3 Target Tracker 
Since the FPSS tracker has been developed and 

adequately tested with the original FPSS dataset, it was 
chosen for this evaluation work as well. 

3.1 Background modeling 
The key component of the FPSS tracker is its 

background modeling and subtraction process, which is 
depicted in Figure 3.  Each input image is first filtered by a 
stability mask and then channeled through four image 
buffers of equal size and depth.  These buffers are first 
initialized with the first input image and then gradually 
updated by other input images in a sequential manner.  
Each newly arrived set of pixel values replaces the oldest 
frame in Buffer 1, while the oldest frame of Buffer 1 
becomes the newest frame in Buffer 2.  The same first-in 
first-out (FIFO) mechanism of frame-shift and update is 
applied to all image buffers continuously.  Buffers 1 and 3 
serve merely as time delays, while the images in Buffers 2 
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and 4 are used to generate Background Models 1 and 2, 
respectively.  Instead of creating it anew from Buffer 4, 
Background Model 2 can also be obtained from a buffer of 
models that is continuously replenished by the outgoing 
representations of Background Model 1.  By subtracting 
an input frame from these background models, we can 
obtain two separate difference images.   

A difference-product image (DPI) is obtained by 
multiplying these two difference images pixel by pixel.  
The product term introduced in this step is useful for the 
subsequent target detection module, because bright blobs 
will be generated for all moving targets regardless of the 
polarity of their original brightness with respect to their 
immediate background.  Although squaring the value of 
each pixel in the first difference image may achieve the 
same effects for the first few input frames, the DPI 
exhibits much better characteristics when the two 
background models later evolve into two background 
representations that are clearly disjointed in time.  

Typically, each input image frame contains a mostly 
stable background with a number of small but volatile 
areas caused by moving objects and other transient events.  
To prevent rapidly changing foreground pixels from 
ruining the background model, a stability mask is used to 
filter out all unstable pixels from the input image frame.  
Supported by the information provided by the DPIs, this 
stability mask looks for significant intensity changes based 
on a predefined threshold of variability and maintains a 
record of the stability index at each pixel location.  Only 
the stable pixels in a given input image frame are fed to 
Buffer 1, while those once-stable but now active pixels are 
blocked and substituted by the corresponding stable pixels 
available from Buffer 1.  Without the stable background 
models, it will be much harder to detect and extract 
legitimate moving objects in the scene, and additional 
false alarms will likely be generated.   

This background modeling structure can be extended to 
include four or more background models for more stable 
background representations and higher target enhancement 
capabilities at the expense of additional computational 
resources. However, an even number of background 

models should be used to handle issues with target polarity 
(for example, the LWIR signatures of a human may appear 
brighter than the background in winter but darker in the 
summer due to a big change in ambient temperature).  

Using multiple disjoint background models to generate a 
DPI is also a very effective way to remove the problematic 
“trailing effect” often associated with the background 
subtraction method.  Because the gradually fading trails 
carved out by the moving objects are now showing up in 
different parts of the two difference images, they are likely 
to diminish or disappear when the DPI is formed, as 
demonstrated in Figure 4.  Random noises at different 
places on the difference images are suppressed in the same 
way.  With the removal or reduction of trailing effect and 
random noises, the target detector is able to estimate the 
size and location of the movers much more accurately. 

3.2 Target detection and tracking 
After a DPI is generated, a morphological operation is 

used to remove small spikes and fill small gaps in the DPI.  
Furthermore, a pyramid-means method is used to enhance 
the centroid and overall silhouette of the moving targets.  
The moving target detection process begins with finding 
the brightest pixel on the post-processed DPI, which is 
usually associated with the most probable moving target in 
the given input frame.  The size of this target is estimated 
by finding all the surrounding pixels that are deemed 
connected to the brightest pixel.  After a moving target is 
detected, all the pixels within a rectangular target-sized 
area surrounding that target are reduced to zero in value, 
thus excluding them from subsequent detections.  This 
detection mechanism is repeated by finding the next 
brightest pixel available and it continues until all the pixels 
are reduced to zeroes, a predefined number of detections 
are obtained, or other user-defined stopping criteria are 
met.  These stopping criteria may include the minimum 
size of potential targets, the proportion of overlapping area 
allowable between adjacent targets, and the “don’t care” 
area, in which all detections should be ignored.   

 
 

Figure 3.  The background modeling and subtraction 
process in the FPSS tracker. 

 
 

Figure 4.  Enhancement of target signatures and 
suppression of trailing effects and noises via a DPI. 
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Using the detection results on consecutive input images, 
tracks of all moving targets are built and maintained.  In 
order to build a meaningful track, a noticeable moving 
target must appear in multiple contiguous frames in a 
video sequence.  This requirement may not be met when 
the target is moving across the field of view of the camera 
at a very short range and/or a very high speed; when the 
camera is operated at a very low frame rate; when the 
target is occluded for an extended period of time and/or 
behind a very large obstacle; or when a combination of 
these and other detrimental factors occur.  The FPSS 
tracker uses previous locations, velocity, and target size of 
a moving target to predict the destination of its next 
movement.   

4 Experimental Results 
The FPSS dataset consists of 53 short video sequences 

for a total of 71236 frames depicting various staged 
suspicious activities around a big parking lot.  Ground-
truth information (target type and target location) 
associated with each observable moving target on each 
image frame was semi-manually generated using a 
ground-truthing GUI.  Using the ground-truth information 
and the target size estimated by the FPSS tracker, we may 
compute and compare the tracking performance of the 
FPSS tracker on the original FPSS dataset and the fused 
images generated by different image fusion methods.   

The ground-truth files associated with a concurrent pair 
of color-LWIR sequences may vary slightly in their 
content, because some moving targets may sometimes be 
observable in one but not both of the imageries.  For 
example, a man walking in a dark area at night can be seen 
in the LWIR sequence, but is completely obscured in the 
corresponding color sequence.  Since we used the LWIR 
approximation coefficients during the process of pyramid 
decompositions and the LWIR ground-truth files usually 
contain more information on the targets, we chose the 
LWIR ground-truths files for the purpose of verifying the 
detections on fused images.   

To be qualified for a correct detection or a hit, the 
ground-truth location must be included in the target-size 
bounding box estimated by the FPSS tracker for the given 
detection.  Multiple detections on the same target were 
counted as only one hit, but no additional penalty was 
imposed in this situation.  Multiple detections on a non-
target, however, were treated as multiple false alarms 
(FAs), which would decrease the tracking performance.  
When multiple targets in proximity were covered by a 
single detection, it would be treated as multiple hits and 
would boost the tracking performance.  Ground-truth 
targets that were not included by the bounding box of any 
detection were regarded as misses that would hurt the 
tracking performance.   

An adjustable acceptance threshold was used to vary the 
tradeoff between hits and FAs.  By gradually lowering the 
acceptance threshold, the number of hits and FAs increase 
monotonically.  By plotting the FA rate (FAR) (number of 
incorrect detections per frame) against the hit rate 

(percentage of true targets that were correctly detected) at 
different acceptance thresholds, a receiver operating 
characteristic (ROC) curve is formed.  Values closest to 
the upper-left corner of an ROC curve are the best results, 
indicating high accuracy with few FAs.  To emphasize the 
critical differences between the ROC curves, we focus on 
the region of up to 0.1 FA per frame.  The ROC curves for 
the original LWIR and color sequences serve as the 
benchmark performance metric.  

Figure 5 shows the ROC curves associated with the 
fused images generated by four simple-combination 
methods: simple averaging, PCA-weighted averaging, 
maximum pixel selection, and minimum pixel selection.  It 
is clear that the original LWIR images performed the best 
with a very low FAR among this group of six candidates.  
On the other hand, the original color images were lagging 
behind their LWIR counterparts consistently due to a 
significant increase in the number of FAs caused by 
headlight glares and windshield reflections in the evening 
hours and protracted shadows under the slanted sun.  
Given the nature of simply averaging or selecting the 
pixels of the original color and LWIR images by the four 
simple-combination methods, it is expected that their 
resulting fused images would perform somewhere between 
the original color and LWIR images.  This is indeed the 
case for the FAR region of 0.02 or less FAs per frame.  As 
we increase the allowable number of false alarms by 
lowering the acceptance threshold, the fused images 
produced by simple averaging and maximum pixel 
selection methods continue to yield hit rates between the 
original color and LWIR images, but the fused images 
generated by PCA-weighted averaging and minimum pixel 
selection methods gradually fall below the original color 
images.  Hence, there is little to no performance benefit in 
using images fused with simple combination methods over 
the original LWIR images.  Although it is not shown here, 
we have found that these trends continue at much higher 
FARs as well.  

 
 

Figure 5.  The performance of four simple-combination 
methods at low FA region. 
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For the fusion methods based on pyramid structures, 
they were all performed with an identical set of running 
parameters, such as using five levels of decomposition and 
a 7 by 7 neighborhood size when running a saliency/match 
measure.  Based on their resulting ROC curves, these 
pyramid-based fusion methods can be categorized into two 
groups for subsequent discussions: four inferior methods 
and five superior methods.  As shown in Table 1, all nine 
pyramid-based methods are much more computationally 
intensive than the four simple combination methods, 
especially the SIDWT, gradient and morphological 
pyramids.  Although the DT-CWT is more than four times 
more efficient than its more redundant variant, SIDWT, it 
is still more than twice as slow than the other five simpler 
pyramid-based methods, three of which are ranked 
together in the superior pyramid column.  More 
computations do not always generate better results, and as 
we can see, among the pyramid-based methods there are 
faster and slower candidates in both the inferior and 
superior columns of Table 1. 

As shown in Figure 6, the FSD, gradient and DWT 
achieve slightly worse performance than the original 
LWIR images at low FARs, whereas the morphological 
pyramid method clearly lags all others under the same 
conditions.  If the plots are extended, we find that the 
DWT and morphological pyramid methods are able to 
surpass the LWIR curve at the FAR region of 0.5 FA per 
frame or higher.  Nonetheless, these two methods lack the 
flexibility to perform in versatile systems.  

Finally, there are five pyramid-based fusion methods 
that can achieve good results on both ends of the ROC 
curves: the Laplacian, ROLP, contrast, SIDWT, and DT-
CWT pyramid methods.  As shown in Figure 7, these five 
fusion methods clearly outperform the original color and 
LWIR images from the beginning and attain the largest 
advantage at around 0.02 FA per frame.   The advantage of 
these five fusion methods over the original color and 
LWIR images is still maintained in the higher FAR region.  
The SIDWT is slightly behind the other four methods at 

very high FARs, and since it is much more demanding 
computationally, it is the least desirable method in this 
group.  Apparently, ROLP works the best in our testing in 
terms of accuracy and efficiency.  Although a 90% hit rate 
is achievable for almost all these methods with a FAR of 
0.5 or less, the marginal benefit in the hit rate quickly 
decreases in the range of 0.5 to 2 FAs per frame. 

5 Conclusion 
We explored and exploited the rather complementary 

natures of two common imaging sensors: LWIR and color 
visible sensors.  Instead of harnessing prior background 
knowledge and external information sources to perform 
symbolic level image fusion, we focused on pixel-level 
image fusion.  Therefore, the techniques examined and the 
results obtained in this work are more readily transferrable 
to other applications and scenarios that process color and 
LWIR imageries.  

Based on the results generated by the four simple-
combination methods examined in this work, we conclude 
that these methods are not useful, because their 
performances were worse than using the original LWIR 
images alone.  Among the 9 pyramid-based fusion 
methods, the gradient and FSD methods are even worse 
than the simple-combination methods, because they 
required 10‒60 times more computational resources but 
performed worse at high FAR region.  The morphological 
and DWT methods are slightly better than the gradient and 
FSD methods, primarily because they managed to 
outperform LWIR in the high FAR region.  On the other 
hand, the Laplacian, ROLP, contrast, SIDWT, and DT-
CWT are considered superior fusion methods, because 
they consistently outperformed LWIR in every FAR 
region, though the SIDWT required substantially more 
computational resources.  ROLP and contrast methods can 
be considered the best with the FPSS tracker, as their ROC 
curves are consistently superior while their computational 
needs are among the lowest of the pyramid-based 
methods.   

 
 

Figure 6.  The performance of four inferior pyramid-
based fusion methods at low FA region. 

 
 

Figure 7.  The performance of five superior pyramid-
based fusion methods at low FA region. 
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Table 1.  CPU time (seconds) spent on making 30 fused images using MATLAB code on a Dell T7400 workstation. 

Simple combination CPU time Inferior pyramid CPU time Superior pyramid CPU time 

Simple average 1.280 FSD 21.670 Laplacian 24.040 
PCA average 2.030 Gradient 78.970 ROLP 23.050 

Max pixel 1.560 DWT 22.740 Contrast 23.240 
Min pixel 1.840 Morpho 62.530 SIDWT 209.600 

    DT-CWT 49.940 

 
One simple possibility for improving performance may 

be to treat each color image as three separate images 
(RGB) and fuse the set of four images together.  The 
fusion algorithms do not limit the number of images that 
can be fused.  Short-wave infrared (SWIR) and 
hyperspectral imageries could also be included if they are 
properly co-registered.  Performance may also be further 
improved by linking the fusion process with the tracking 
algorithm, through which the information that is critical to 
the tracker may be better preserved or enhanced.  For 
instance, a region-based segmentation algorithm may be 
incorporated into a DT-CWT fusion process [17], 
exploiting the limited redundancy in DT-CWT and tying 
the feature level and pixel-level fusion algorithms 
together.   
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